On fundamental sets over a finite field
نویسندگان
چکیده
منابع مشابه
enumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملSpecies Over a Finite Field
We generalize Joyal’s theory of species to the case of functors from the groupoid of finite sets to the category of varieties over Fq . These have cycle index series defined by counting fixed points of twisted Frobenius maps. We give an application to configuration spaces.
متن کاملOn transitive soft sets over semihypergroups
The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.
متن کاملOn value sets of polynomials over a field
Abstract Let F be any field. Let p(F ) be the characteristic of F if F is not of characteristic zero, and let p(F ) = +∞ otherwise. Let A1, . . . , An be finite nonempty subsets of F , and let f(x1, . . . , xn) = a1x k 1 + · · ·+ anx k n + g(x1, . . . , xn) ∈ F [x1, . . . , xn] with k ∈ {1, 2, 3, . . .}, a1, . . . , an ∈ F \ {0} and deg g < k. We show that |{f(x1, . . . , xn) : x1 ∈ A1, . . . ,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1985
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171285000394